If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+18y-4=0
a = 6; b = 18; c = -4;
Δ = b2-4ac
Δ = 182-4·6·(-4)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{105}}{2*6}=\frac{-18-2\sqrt{105}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{105}}{2*6}=\frac{-18+2\sqrt{105}}{12} $
| 3.2+y=9 | | 7(-3x+10)=-161 | | 5y^2-14y+2=0 | | 3(-7x-6)=-186 | | 11-x÷6=-11 | | -6(6x-6)=36 | | 6y^2+16y-7=0 | | -5x+8=11x+104 | | -4.2x+3=2.5x-6 | | X+35y=94 | | 2(-1x+10)=26 | | 45-6y=5y+32 | | 7n+5-3n=13 | | -2y+540=-210+50y | | x-4=2+2/5 | | 7y^2-30y+9=0 | | -2(x-4)x=5 | | -5+4h=50.52 | | -7(5+2x)=-7 | | 6y-16=4y+8 | | 12+32+2s-4=48 | | 3(10-4x)=-2x | | 2y^2+24y-5=0 | | 36=y-45 | | 1/3x+2x=10 | | X-2(3x)=-25 | | 9x+54=18-2x=8 | | x=5/4+4 | | 9(x+1)=5 | | 4y^2-18y+3=0 | | 12+s+4=48 | | 3r^2+6r-105=0 |